

Chapter 1: Problem Statement

 Each time a new card payment arrives to our mainframe, provide a risk score (from 0 to 99)

 Apply this score together with some business rules to decide if the payment is accepted or not

How is being doing this?

FICO® Falcon® Fraud Manager

External companies with very expensive prices

We want to but ... how?

- Using an Artificial Neural Network
- Training data: labeled past transactions

A First Look at NN

Schematic for a neuron in a neural net

Gradient Descent

it's based on the next idea:

• if F(x) is **defined** and **differentiable** in a point a

• *F(x)* decreases fastest if one goes from *a* in the direction of the negative gradient of *F*

Training a Single Neurone

$$z^{(i)} = w_1^{(i)} x_1^{(i)} + w_2^{(i)} x_2^{(i)} + \dots + w_n^{(i)} x_n^{(i)}$$

$$E = \frac{1}{2} \sum_{i} (t^{(i)} - y^{(i)})^2$$

$$\triangle w_k = \sum_i \epsilon x_k^{(i)} (t^{(i)} - y^{(i)})$$

But there are many neurones...

By applying the chain rule:

$$\frac{\delta E_{total}}{\delta w_{o_1}^1} = \frac{\delta E_{total}}{\delta out_{o_1}} \times \frac{\delta out_{o_1}}{\delta net_{o_1}} \times \frac{\delta net_{o_1}}{\delta w_{o_1}^1}$$

This seems tedious...

- With the advent of Deep Learning, there are many libraries to make you life easier:
 - TensorFlow (google)
 - Theano (U. of Montreal)
 - Caffe (U. of Berkley)
 - Torch (Facebook, Twitter, Google)

•

Chapter 2: Are Credit card payments big data?

10 _

 BBVA processes 903,646,280 transactions during 2014 (around 30 transactions per sec.)
 — Spain

- Local merchant transaction
- Verified by Visa

It doesn't matter the type of loop, the answer must be provided in less than 2 seconds!

The enormity of the tragedy

- 1 / 6000 fraudulent transactions (0,016667%), it's more likely to find a cat in a youtube video
- even worse! Fraud is not correctly labeled (noise)

Fraud database information

- Fraud database does not include the timestamp, only the date.
- Amounts are not exactly the same
- The number of transactions composing a reported fraud is unknown.

Record linkage rules

- If a client reports a fraud between +/- 36 hours of a transaction, and such transaction differs less than 10% of the reported fraud, the transaction is considered fraud.
- We did not try to group different transactions within the fraud time period (to be improved)
- With these simple rules a only of fraud 13% is not linked

First attempt

 If deep learning is so cool and powerful, let's create a single big network

 New goal: remove as many non-fraud transactions as possible while conserving the maximum number of fraud transactions

Filters with NN:

- Output: [1,0] non-fraud, [0,1] for fraud
- If (output0 output1) >
 0 then discarded
- Downsampling in some sense

Dataset	# Trans.	%	Fraud
Original	903.646.28	100 %	100 %
1st Filter	646.669.68 1	71,6 %	95 %
2nd Filter	53.254.006	5,9 %	88 %
3rd Filter	9.955.055	1,1 %	45 %

- A cost Sensitive metric evaluates the cost associated with misclassifying observations.
- Normally, it's defined as C(FN), C(FP) in the confusion matrix
- In our case cost is data-driven, the amount of the payment

Business metrics

- Value detected rate: ~25%
 - Blocked €25 / €100 fraud transaction
- Positive predictive rate (TFPR): ~20%
 - Detected 1 fraud transaction with 4 false positive
 - Model stability is a must

Neural Network Details

- MultiLayer Perceptron
- Rectified Linear (ReLu) hidden units: f(x)=max(0,x)
- For the sake of stability and convergence of the SGD back propagation we use batch normalisation (50% F - 50% NF)
- Combines two networks, one with 1 hidden layer and another with 2 (256 neurones each) and 1 output neurone.
- MaxNorm regularisation is set to 3.0

Research Conclusions

- Real datasets are not simple (human + legacy)
- In 6 months we were able to obtain decent results
- At least for this topic, ANN are flexible enough to overtake all the problems we had to handle

. AND SERVE Jana Care