¿CÓMO ESTRUCTURAR UN BUEN PROYECTO DE *MACHINE LEARNING*?

Anna Bosch Rue VP Data Intelligence @ Launchmetrics

annaboschrue@gmail.com

Motivating example

90% Accuracy and you want to do better

IDEAS:

- Collect more data
- Collect more diverse training set
- Train algorithm longer with gradient descent
- Try Adam instead of gradient descent
- Try bigger network
- Try smaller network

- Try dropout
- Add regularization
- Network arquitecture:
 - Activation functions
 - # hidden units
 - ...

CONTENT

1. PART 1

- 1.1. Introduction to ML Strategy
- 1.2. Setting up your goal
- 1.3. Comparing to human-level performance

2. PART 2

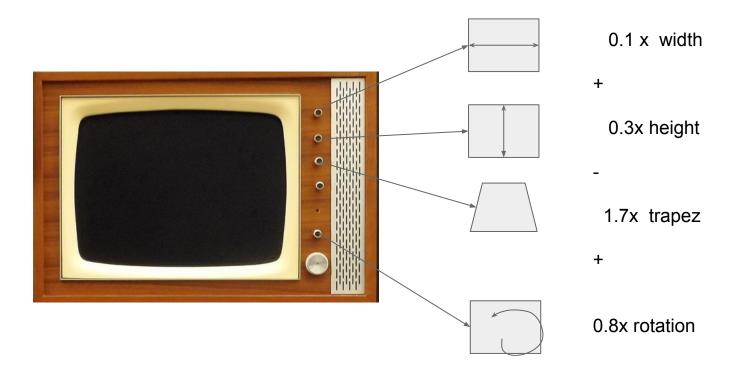
- 2.1. Error analysis
- 2.2. Mismatched training and dev/test set
- 2.3. Learning from multiple tasks
- 2.4. End-to-end deep learning

INTRODUCTION TO ML

STRATEGY

Introduction to ML strategy

ORTHOGONALIZATION (I)



Introduction to ML strategy

ORTHOGONALIZATION (II)

Chain of assumptions in ML

Fit training set well on cost function

Fit **dev set** well on cost function

Fit **test set** well on cost function

Performs well in real world

Bigger network Adam

Regularization Bigger training set

Bigger dev set

Change dev set Change cost function

SETTING UP YOUR GOAL

SINGLE NUMBER EVALUATION METRIC

Idea Experiment Code

Classifier	Precision	Recall	F1 Score
А	95%	90%	92.4%
В	98%	85%	91.0%

Algorithm	US	China	India	Other	Average
А	3%	7%	5%	9%	6%
В	5%	6%	5%	10%	6.5%
С	2%	3%	4%	5%	3.5%
D	5%	8%	7%	2%	5.25%
E	4%	5%	2%	4%	3.75%
F	7%	11%	8%	12%	9.5%

SATISFICING AND OPTIMIZING METRIC

Classifier	Accuracy	Running time
А	90%	80ms
В	92%	95ms
С	95%	1,500ms

Cost = Accuracy - 0.5 Running time

Maximize Accuracy Subject to Running time <= 100ms N Metrics: 1 Optimizing N-1 Satisficing

TRAIN/DEV/TEST DISTRIBUTIONS

REGIONS:

- US
 UK
 Other Europe
 South America
 India
 China
 Other Asia
 - Australia

Randomly shuffle into dev/test

True story (By Andrew NG):

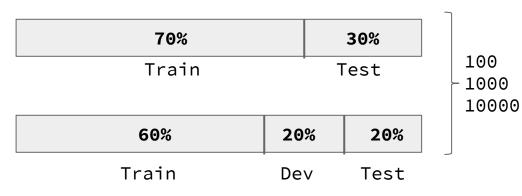
- Optimizing on dev set on loan approvals for medium income zip codes
- Tested on low income zip codes

Guideline:

Choose a dev set and test set (same distribution) to reflect data you expect to get in the future and consider important to do well on.

SIZE OF THE DEV & TEST SETS

OLD WAY OF SPLITTING DATA



Set your **dev set** to be big enough to detect differences in algorithm/models you're trying out

 NEW WAY OF SPLITTING DATA

 98%

 Train

 D/T

Set your **test set** to be big enough to give high confidence in the overall performance of your system

WHEN TO CHANGE DEV/TEST SETS AND METRICS

CAT DATASET EXAMPLES

Metric: classification error

Algorithm A: 3% — Pornografic Algorithm B: 5%

Error:

$$\frac{1}{\sum_{i} w(i)} \frac{1}{M_{dev}} \sum_{i=1}^{M_{dev}} w(i) (\hat{y} - y)$$

 $w^{(i)} = \begin{bmatrix} 1 & \text{if } x(i) & \text{is non-porn} \\ 10 & \text{if } x(i) & \text{is porn} \end{bmatrix}$

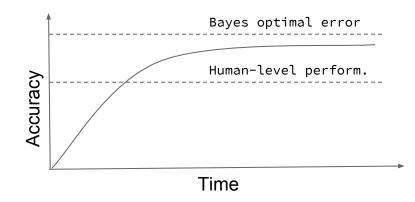
Orthogonalization: (i)So far we've discussed how to define a metric to evaluate classifiers, (2)worry separately about how to do well on this metric

If doing well on your metric + dev/test set does not correspond to doing well on your application, change your metric and/or dev/test set

COMPARING TO HUMAN-LEVEL

PERFORMANCE

WHY HUMAN-LEVEL PERFORMANCE?



Humans are quite good at a lot of tasks. So long as ML is worse than humans, you can:

- Get labeled data from humans
- Gain insight from manual error
- Better analysis of bias/variance

Comparing to human-level performance

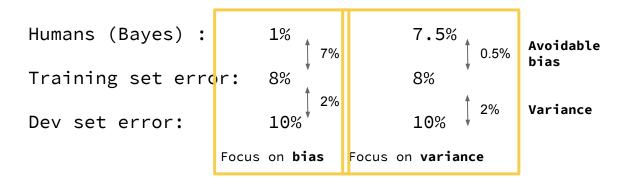
AVOIDABLE BIAS

Use human level error as a proxy for Bayes error

BIAS & VARIANCE

Cat classification

Human level (aprox)	: 0%	0%	0%	0%
Training set error	15%	1%	15%	0.5%
Dev set error:	16%	11%	30%	1%
	High bias ŀ	-	high bias	low bias
			nigh variance	low variance



UNDERSTANDING HUMAN -LEVEL PERFORMANCE (I)

3% error

1% error

0.7% error

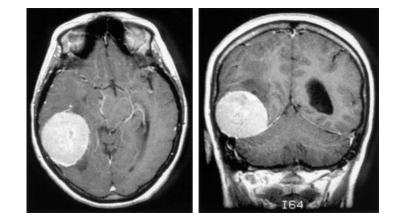
HUMAN-LEVEL ERROR AS A PROXY FOR BAYES ERROR

Medical image classification example: Suppose:

- (a) Typical human
- (b) Typical doctor
- (c) Experienced doctor
- (d) Team of experienced doctors 0.5 error

What is the "human-level" error?

Bayes error <= 0.5%



Comparing to human-level performance

UNDERSTANDING HUMAN -LEVEL PERFORMANCE (II)

Human	1%/0.7%/0.5%	1%/0.7%/0.5%	0.7%/0.5%
Avoidable bias	4%-4.5%	0%-0.5%	0.2%-0%
Training error	5%	1%	0.7%
Variance	1%	4%	0.1%
Dev error	6%	5%	0.8%
	Bias	Variance	

Comparing to human-level performance

UNDERSTANDING HUMAN -LEVEL PERFORMANCE (II)

Human	1%/0.7%/0.5%		1%/0.7%/0.5%		0.7%/0.5%		
Avoidable bias Training error Variance	 Guide: Compare with the optimal error Use the human error as a proxy Knowing the optimal error we will be more fast and efficient We will know if we need to focus on reducing bias or variance It will work until we reach human error After that it will be more difficult 						
Dev error	Bias		Variance				

SURPASSING HUMAN-LEVEL PERFORMANCE

Team of Humans		0.5%		0.5%
	0.1%		-0.2%	
One human		1%		1%
Training error	Ļ	0.6%		0.3%
	0.2%		-0.1%	
Dev error	¥	0.8%		0.4%

PROBLEMS WHERE ML SIGNIFICANTLY SURPASSES HUMAN-LEVEL PERFORMANCE:

- Online advertising
- Product recommendations
- Logistics (predicting transit time)
- Loan approvals
- Speech recognition
- Some image recognition
- Medical (ECG, ...)
- Structured data
- Not natural perception
- Lots of data

IMPROVING YOUR MODEL PERFORMANCE

THE TWO FUNDAMENTAL ASSUMPTIONS OF SUPERVISED LEARNING

- (1) You can fit the training set pretty well
- (2) The training set performance generalizes pretty well to the dev/test set

REDUCING (AVOIDABLE) BIAS & VARIANCE

Human level

Bias

Training error

Variance

Dev error

Train bigger model Train longer/better optimization algorithms (momentum, RMSprop, Adam) NN architecture/hyperparameters search (RNN, CNN)

More data Regularization: L2, dropout, data augmentation NN architecture /hyperparameters search

Anna Bosch Rue VP Data Intelligence @ Launchmetrics

annaboschrue@gmail.com